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A theoretical density functional study of the relationship between the nearest-neighbor constants and the
number of peripheral complexes in the cyano-bridged [Cr[CNMn(salen)(H2O)]6]3+ and [(5-Brsalen)2(H2O)2-
Mn2Cr(CN)6] clusters is presented. Two approaches show that the antiferromagnetic coupling interactions
between nearest neighbors decrease with the increase of the number of peripheral complexes, although the
second approach provides better results using several exchange-correlation functionals. The first approach
consisted of evaluating the exchange coupling constantJij between two paramagnetic metal centersi andj in
the hexanuclear molecule by calculating the energy differences between the highest and broken-symmetry
spin states of a model molecule in which metal atoms except fori andj are substituted by diamagnetic Zn(II)
cations, while the second consisted of calculating the different spin-state energies of hexanuclear complexes
and using the Heisenberg Hamiltonian to obtain the exchange coupling constants between different metal
centers. Moreover, Kahn’s qualitative theory succeeded in being applied to interpret the trend.

Introduction

In recent years, the synthesis and study of single-molecule
magnets with high total spin that can be used to store potential
data has received much attention.1-10 Among these single-
molecule magnets, cyanide single-molecule magnets are the
most extensively studied families experimentally because of their
special structures. Many cyanide single-molecule magnets with
different first and second transition-metal centers have been
synthesized.5-9 However, a lot of theoretical studies on single-
molecule magnets were often limited to homopolynuclear
clusters such as Mn4,10 Mn10,11 V15,12 Ni62, and Cu62 clusters.
Few theoretical studies on cyanide heteropolynuclear clusters
have been found, to our knowledge. To extend the research of
the cyanide heteropolynuclear single-molecule magnets, we will
investigate the magnetism of the cyano-bridged single-molecule
magnet [Cr[CNMn(salen)(H2O)]6]3+ 6 using density functional
theory (DFT).

Long and co-workers found that the absolute nearest-neighbor
constantsJ diminish as the number of peripheral complexes
connected to the central ions increase for a series of cyano-
bridged Mn(II)-Cr(III),8,13Mn(III) -Cr(III),5,6 Mn(II)-Mo(III), 7

Mo(III) -Ni(II), 9 and Cr(III)-Ni(II) 14,15complexes. To inspect
whether the absolute nearest-neighbor constantsJ always
diminish as the number of peripheral complexes increases for
the above complexes, we selected the cyano-bridged [Cr[CNMn-
(salen)(H2O)]6]3+ cluster6 (complexI ) and the linear trinuclear
[(5-Brsalen)2(H2O)2Mn2Cr(CN)6] cluster5 (complex II ) to in-
vestigate the relationship between the exchange coupling
constantsJ and the number of peripheral complexes. Also,
Kahn’s qualitative theory16 was used by us to interpret the
relationship. Finally, we will discuss the relationship between
the calculated spin density populations on Cr(III) or Mn(III)
and the number of peripheral complexes.

Computational Methodology

Description of the Complexes and Models.ComplexI6 {Cr-
[CNMn(salen)(H2O)]6}3+ is a polynuclear cluster in which a
central [Cr(CN)6]3- unit is coordinated through each of its
nitrogen atoms to a salen-bound Mn(III) center (see Figure 1;
H atoms are omitted.).

ComplexII 5 [(5-Brsalen)2(H2O)2Mn2Cr(CN)6]- is a trinuclear
cluster wherein an octahedral [Cr(CN)6]3- complex is sand-
wiched between a pair of [Mn(5-Brsalen)(H2O)]+ units (see
Figure 2; H and Br atoms are omitted).

ModelsA andB (see Figure 3) are the modeled structures
which only include one peripheral complex of complexesI and
II , respectively.* Corresponding author. E-mail: zhangyiquan@pine.njnu.edu.cn.

Figure 1. Structure of complexI .

5096 J. Phys. Chem. A2006,110,5096-5101

10.1021/jp056446p CCC: $33.50 © 2006 American Chemical Society
Published on Web 03/30/2006



ModelsA1, which was obtained by substituting the phenyl
rings of modelA with a localized HCdCH, A2 (including two
peripheral complexes),A3 (including three peripheral com-
plexes),A4 (including four peripheral complexes),A5 (including
five peripheral complexes), andA6 (including six peripheral
complexes) (see Figure 4) were used to investigate the relation-
ship betweenJ12 and the number of peripheral complexes.

All the models were directly taken from complexesI andII
and not optimized, because small changes to the experimental
structures could result in significant deviations for the coupling
constants.

Calculation of Exchange Coupling Constant.Now, there
are two different approaches to calculate the exchange coupling
constants for the polynuclear complexes.2-4 In all calculations,
the spin-orbit coupling is not considered, so the magnetic
anisotropy need not be considered. The first approach consisted
of evaluating the exchange coupling constantJij between two
paramagnetic metal centersi andj in the hexanuclear molecule
by calculating the energy difference between the highest and
broken-symmetry spin state of a model molecule in which metal
atoms except for the abovei andj are substituted by diamagnetic
Zn(II) cations. This approach was used to calculate the exchange
coupling interactions of hexanuclear complexes in many papers
and has proven to give good results compared to the experi-
mental ones.2-4,17 The second approach is to calculate the
different spin-state energies of hexanuclear complexes and use
the Heisenberg Hamiltonian to obtain the exchange coupling
constants between different metal centers.2-4,17,18It is the more
rigorous approach in evaluatingJ for polynuclear complexes
with respect to the first one. These two approaches will be
interpreted thoroughly below.

At first, we interpret the first approach. The magnetic inter-
actions between Mn(III)and Cr(III) metal ions were studied on
the basis of density functional theory (DFT) coupling with the

broken-symmetry approach (BS).19 The exchange coupling con-
stantsJ have been evaluated by calculating the energy difference
between the high-spin state (EHS) and the broken-symmetry state
(EBS). Assume the spin Hamiltonian is defined as

According to the recent experience of Ruiz et al. based on a
number of calculations on the magnetic exchange coupling
constants with the broken-symmetry approach,20-22 EBS may
be regarded as an approximation of the energy of the lowest
spin state. Considering that local functionals overestimate the
relative stabilization of the lowest spin state relative to the
highest spin state,23 DFT will usually give largerJ values than
experimental ones.24 So, Ruiz et al.21 put forward eq 2 to
calculateJ.

However, this formula corresponds strictly to the limit of
complete overlap between the magnetic orbitals, and such a
hypothesis is not sustained,25 although it can give goodJ results
compared to experiment.20-22

In a recent work, Dai et al.26 examined the eigenstates of the
Heisenberg spin HamiltonianĤ ) -2JŜ1‚Ŝ2 and the Ising spin
Hamiltonian ĤIsing ) -2JŜ1zŜ2z for a general spin dimer
consisting ofM unpaired spins at one spin site andN unpaired
spins at the other spin site. Their work showed that the
description of the highest-spin and broken-symmetry spin states
of a spin dimmer byĤ is the same as that byĤIsing. For the
analysis of spin exchange interaction of a magnetic solid on
the basis of density functional theory, the use of the Heisenberg
spin Hamiltonian in the “cluster” approach is consistent with
that of the Ising spin Hamiltonian in the “noncluster” approach.
They put forward eq 3 according to the Heisenberg spin
Hamiltonian to calculateJ. However, the same expression is
also obtained by considering the energies of the HS and BS
spin states on the basis of the Ising spin Hamiltonian. For

complexesI and II , whereM ) 4 for Mn(III) and N ) 3 for
Cr(III), from eq 3 we further get the expression

Figure 2. Structure of complexII .

Figure 3. Structures of modelsA (left) andB (right).

Ĥ ) -2JŜ1‚Ŝ2 (1)

2J )
EBS - EHS

2S1S2 + S2
(2)

J )
EBS - EHS

MN
(3)

J ) (EBS - EHS)/12 (4)
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Equations 3 and 4 are only used for binuclear compounds. In
the calculations of the polynuclear complexes using the first
approach, we used a diamagnetic Zn(II) to replace one of the
Mn(III); the resulting CrMnZn1-5 complex is equivalent to a
binuclear CrMn complex from the magnetic point of view, and
so, we can use eqs 3 and 4 to obtain the exchange coupling
constantsJ12.

Then, we interpret the more rigorous second approach. If one
neglects spin-orbit coupling effects, the Hamiltonian for a
general extended structure is indicated as

where Ŝi and Ŝj are the spin operators of the different

paramagnetic centers. TheJij values are the coupling constants
between all the paramagnetic centers. In our paper, we only
consider the exchange interactions between nearest neighbors.
This fact together with the presence of additional symmetry
elements in the structure results normally in a reduced set ofJij

values. When using single-determinant methods such as DFT,
the calculated energies are related to the diagonal matrix
elements of the Heisenberg Hamiltonian. An alternative way
to describe the system is by considering an Ising Hamiltonian
as a special case of an Heisenberg Hamiltonian in which only
the diagonal terms are kept. Thus, we can consider that the wave
functions obtained with the single-determinant methods are
eigenfunctions of an Ising Hamiltonian that is formulated with
the sameJ values as the original Heisenberg Hamiltonian,

Figure 4. Structures of modelsA1, A2, A3, A4, A5, andA6.

Ĥ ) ∑
i>j

- 2JijŜiŜj (5)
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because their diagonal terms are identical. For that reason, the
J values obtained with single-determinant methods are directly
comparable to those obtained from experimental data.4 So, we
can use the single-dominant method DFT to obtain theJ values
from calculating the energy differences between two spin states.
A thorough description of this approach can be found in refs
2-4 and 18.

For complexII , which includes three magnetic centers, the
magnetic coupling constantsJ12 between each nearest-neighbor
Cr(III)-Mn(III) pair are the same for the symmetry in the
structure of complexII . Moreover, we only need the nearest-
neighbor coupling constant. So, theJ12 can be extracted by
calculating the energies of two spin states:1 with S ) 5/2 and
2 with S ) 11/2, which are shown in Figure 5. The equation to
extract theJ12 is thus

To obtain all the nearest-neighbor constantsJ12 for the modeled
structuresA2, A3, A,4 A5, andA,6 we also only need to calculate
the energies of two spin states for each model. Two spin states
for each model are as follows:1 with S ) 5/2 and2 with S )
11/2 for A2; 1 with S) 9/2 and2 with S) 15/2 for A3; 1 with S
) 13/2 and2 with S) 19/2 for A4; 1 with S) 17/2 and2 with S
) 23/2 for A5; and1 with S ) 21/2 and2 with S ) 27/2 for A6.
For all the above states for1, only the spins on Cr(III) are
flipped. The equations to extractJ12 values for all the models
are as follows:

DFT calculations have been performed using the Amsterdam
Density Functional (ADF, version 2004.0127) package for four
models. Illas et al.28 showed the strong dependence of the
calculatedJ with respect to the exchange-correlation functional
chosen. Several exchange-correlation functionals will be used
to evaluateJ. In the calculations ofJ using ADF, the local
density approximation (LDA) made use of the Vosko, Wilk,
and Nusair29 (VWN) local-correlation functional. A series of
generalized gradient approximations (GGA), Perdew-Wang
1991 (PW91),30 Perdew-Burke-Ernzerhof (PBE),31 and re-
cently developed OPTX-Perdew (Operdew),32 and OPTX-
Perdew-Burke-Ernzerhof (OPBE)31,32 functionals, were ex-
amined. Basis set TZV2P (a basis set of triple-ê quality33

supplemented with two p orbitals (“polarization functions”)) was
applied for all of the metals (Mn, Cr) and basis set DZP (a
basis set of double-ê quality33 supplemented with one polariza-
tion function) for the other atoms (C, N, and H). The inner core

shells of C(1s), N(1s), Zn(1s, 2s, 2p), Mn(1s, 2s, 2p), and Cr-
(1s, 2s, 2p) were treated by the frozen core approximation. In
calculations, we did not use meta-GGA and hybrid GGA
functionals, because they may give wrong results if used in
combined with frozen core approximation (meta-GGA and
hybrid GGA functionals need a kinetic energy term that is
related to all orbitals) in ADF2004.01.27 The accuracy parameter
(accint) for the numerical integration grid was set to 4.0 for all
of the complexes. The convergence standard of the system
energy was set to be smaller than 10-6 eV, reaching a precision
required for the evaluation ofJ.

Results and Discussion

Relationship BetweenJ12 and the Number of Peripheral
Complexes.The calculated and experimentalJ values are shown
in Table 1.

For modelsA and B, which only include one peripheral
complex of complexesI and II , respectively, the calculated
results using different functionals with the first approach have
small differences. However, from the experimental data, the
intramolecular antiferromagnetic interactions of complexI are
weaker than those of complexII .5,6 So, the accurate calculations
of theJ12 for complexesI andII will be carried out. Also, the
relationship between the nearest-neighbor CrMn constantJ12

and the number of peripheral complexes was investigated.
To evaluate the above two approaches on calculating theJ

values of polynuclear complexes, we first calculated the nearest-
neighbor coupling constantJ12 values of the complete structure
II . The calculated absoluteJ12 values using the first approach
with several LDA and GGA functionals all decrease with the
increase of the number of peripheral complexes with respect to
that of modelB (see Table 1). Moreover, to obtain the more
accurateJ12 values for complexII using the second approach,
we calculated the energy of two spin states,1 with S) 5/2 and
2 with S ) 11/2, which are shown in Figure 5 and used eq 6 to
calculate theJ12 (see Table 1). The calculated results using
several XCs are all better than those using the first approach.
This is because using Zn(II) to replace Mn(III) in the first
approach will ignore the influence of the other Mn(III) on the
interactions between the nearest-neighbor CrMn. Such results
were also found in refs 2-4. It can be seen that there is a good
agreement between the calculations using recently developed
Operdew31 and OPBE30,31 functionals and experimentalJ12

values. However, the two approaches both show that the nearest-
neighbor exchange interactions weaken with the increase of the
peripheral complex.

For simplification, we use modelA1 (Figure 4) which was
obtained by substituting the phenyl rings of modelsA (Figure
3) with the localized HCdCH. From the calculatedJ values of
model A1 with several XCs, they have little difference from
those ofA (see Table 1). So, modelsA2, A3, A4, A5, andA6

(Figure 4) containing two, three, four, five, and six peripheral
complexes of complexI , respectively, were used to investigate

Figure 5. Two spin states:1 with S) 5/2 (left), 2 with S) 11/2 (right)
for complexII .

J12 ) (E1 - E2)/27 (6)

For modelA2, the equation is thusJ12 ) (E1 - E2)/27 (7)

For modelA3, the equation is thusJ12 ) (E1 - E2)/39 (8)

For modelA4, the equation is thusJ12 ) (E1 - E2)/51 (9)

For modelA5, the equation is thusJ12 ) (E1 - E2)/63
(10)

For modelA6, the equation is thusJ12 ) (E1 - E2)/75
(11)

TABLE 1: Calculated J12 Values (cm-1) for A, A 1, B, and II
and Experimental J12 Values (cm-1) for Complexes I and II
Using Different Functionals in ADF

first approach (BS-DFT) second approach

A A1 B II II

VWN -248.2 -251.4 -239.7 -136.5 -49.2
PW91 -209.4 -207.1 -200.9 -107.2 -30.6
PBE -207.6 -204.9 -198.9 -106.9 -30.8
Operdew -117.3 -96.0 -124.3 -61.9 -8.6
OPBE -121.2 -99.5 -127.2 -66.6 -10.8
exptl -2.56 -6.35
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the relationship betweenJ12 and the number of peripheral
complexes. Two approaches with several LDA and GGA
functionals were used to investigate the relationship which is
shown in Figure 6 where the absoluteJ12 values all decrease
with the increase of the number of peripheral complexes.

The second approach also gives better results than the first
one. From the calculatedJ12 values, the consistent behavior
between the calculatedJ and the experimental value improves
in the sequence of the LDA (VWN), the GGA (PW91 and PBE),
and the GGA (OPerdew and OPBE), in general, which was also
found in ref 35. For modelA6, which is the most similar to the
complete structureI , the calculatedJ12 values using the second
approach with Operdew and OPBE functionals are also the
nearest to the experimental result.

Qualitative Analysis of the Exchange Interaction.Accord-
ing to Kahn’s theory,16 the exchange coupling constantJ is

expressed in eq 12 (Ĥ ) -2JŜ1‚Ŝ2). The positive term,Kab,

represents the ferromagnetic contributionJF, favoring parallel
alignment of the spins and a triplet ground state, while the
negative term-Sab(∆2 - δ2)1/2 is the antiferromagnetic con-
tribution JAF, favoring antiparallel alignment of the spins and a
singlet ground state.Sab is the overlap integrals betweena and
b. δ is the initial energy gap between the magnetic orbitals,∆
the energy gap between the molecular orbitals derived from
them. When several electrons are present on each center,nA on
one side andnB on the other,J can be described by the sum of
the different “orbital interactions” asJab, defined as above for
pairs of orbitalsa andb located on each site, weighted by the
number of electrons

Some authors36,37have recently shown that magnetic orbitals
a and b are well-represented by the localized orbitals of the
broken-symmetry solution (they call them BS-OMSO38). There
are twelve different contributions to the exchange coupling
constant in each Cr(III)-Mn(III) pair; the inappropriate orienta-
tion of some the magnetic orbitals involved allows us to discard
most of them. The ferromagnetic contributions are not consid-
ered, because the antiferromagnetic coupling interactions for
all the complexes are dominant. Moreover, as usual, the changes
in theJAF term are more important, and these contributions will
usually control the magnetostructural correlations, especially for
those whose intramolecular interactions are antiferromagnetic.
Also, we found that, although the ferromagnetic termJF may
contribute 20% or 30% to the exchange coupling interaction,
the variation ofJF with the increase of the number of peripheral

Figure 6. Relationship between the nearest-neighbor interaction constantJ12 (cm-1) and the number of peripheral complexesn with several functionals
(VWN (9), PW91 (b), PBE (2), Operdew (1) and OPBE ([)) for the models of complexI . (a) the relationship using the first approach; (b) the
relationship using the second approach.

Figure 7. Relationship between the nearest-neighbor interaction
constantJ12 (cm-1) and the mean overlap integralSij with the increase
of the number of peripheral complexes using PW91 functional for the
models of complexI .

Figure 8. Relationship between the nearest-neighbor interaction constantJ12 (cm-1) and the spin density populationsF on Cr(III) (Figure 8a) and
Mn(III) (Figure 8b) in the high-spin states with PW91 functional for the models of complexI using the second approach.

Jab ≈ Kab - Sab(∆
2 - δ2)1/2 (12)

J ) Σa,bJab/nA × nB (13)
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complexes is small compared to that ofJAF and can be neglected.
Hence, we only considered the changes in theJAF term. Among
the important antiferromagnetic contributions, the most relevant
ones are those involving two t2g orbitals (dxy and dxz) of the
Cr(III), which are directed toward the bridging ligand because
of the good overlap with the appropriate t2g orbitals (dxy and
dxz) of the Mn(III). The mean overlap integralSij between the
four orbitals of the Cr(III) and Mn(III) can be expressed as

Figure 7 gives the relationship betweenJ12 andSij obtained
using eq 14 and the PW91 functional with the increase of the
number of peripheral complexes.

The absoluteJ12 values decrease with the decrease ofSij in
accordance with Kahn’s qualitative theory. Therefore, we can
conclude that the increase of the number of peripheral complexes
will decrease the overlap integralSij. The above conclusion can
also be verified by investigating the relationship betweenJ12

and the spin density populations on Cr(III) and Mn(III) with
the increase of the number of peripheral complexes. Because
the spin density populations on several Mn(III) are almost the
same, we only use the spin density population on one of Mn-
(III). The relationship is shown in Figure 8a,b where the spin
density populations on Cr(III) and Mn(III) obtained with
Mulliken Population Analysis39 calculated using the PW91
functional in the ADF2004.01 package in the high-spin (HS)
state increase with the increase of the number of peripheral
complexes, and consequently, theSij decreases and then the
absoluteJ12 decreases in accordance with Kahn’s theory.

The above results were calculated using the second approach.
The first approach also gives the same trend.

Conclusions

Two approaches were used to investigate the magnetic
coupling interactions between the nearest-neighbor Cr(III) and
Mn(III) for complexesI andII . From our calculations, although
the second approach gives betterJ12 values than those using
the first approach, the two approaches both show that the
antiferromagnetic interactions between nearest neighbors de-
crease with the increase of the number of peripheral complexes
for our studied Cr(III)-Mn(III) systems. The trend is rational-
ized by using Kahn’s theory through the overlap integralSij

and the spin density populations on Cr(III) and Mn(III) in the
HS states successfully. Our calculations will be of help in
understanding the same trend found in a series of other cyano-
bridged transition-metal complexes in which the intramolecular
interactions are antiferromagnetic, although such a trend is
system-dependent.
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